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Effect of templated quenched disorder on fluid phase equilibrium
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Templating offers a means to direct the structure of quenched disorder. We show here that changes in phase
equilibrium due to the presence of quenched disorder can themselves be altered by templating. We calculate
the phase diagram of a fluid in a collection of template-directed, quenched particles by solving a set of replica
Ornstein-Zernike equations within the mean spherical approximation and show templating to enhance phase
behavior, that is, shift the phase envelope upward from its location for a nontemplated system of identical
available volume. This enhancement is due to an augmented number of fluid-fluid interactions.
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The presence of quenched disorder is known to have ammersed in a collection of quenched particles is lowered
profound effect on the phase behavior of various magnetigvith increasing number density of the matrix. It is also ob-
and fluid system§l]. Examples of this are single component served experimentallj11] and theoretically{12] that tem-
or binary systems immersed in porous glasses or silica ge[glating increases the volume available to an adsorbed fluid,
[2—9]. In these systems, the liquid-vapor or liquid-liquid SO one might expect templating to have an effect similar to
critical temperature is typically lowered and the phase envedecreasing the quenched matrix number density. It is one of
lope narrowed compared to those of the corresponding bullhe goals of this article to distinguish these two effects.
system. Although the effects of quenched disorder are often USiNg arguments similar to ones used for nontemplated
explained by the presence of random fields in a fully avail-SyStems[17,18, we recently proposed a set of replica
able system[10], most physical manifestations involve Orns_tem—Zemlke equations r_elatmg the direct and total cor-
highly correlated fields and regions of unavailabilitue to, reIaFlon functions for a fluid in a templated porous material
for example, gel strands or pore wall# is clear that these [19]:
characteristics, and thus also the nature of any phase transi-

tion, depend on the structure of the quenched disorder, a hoo= Coot P0Coo® hoot Por Cor @ Noor » 1)
property that can be controlled by realizing the quench in the
presence of a removable, structure-directing template. An hoor = Coor + PoCo0® Noor + por Coo @ horor 2
important practical example of this is the molecular templat-
ing of porous materials where the material is formeér- horor=Coror + poCoor ® Nogr + porCorgr ®hgrgr,  (3)

haps by gelationin the presence of a shape-directing tem-
plate species that is later removed by thermal or chemical —  —c 4 5 co®hy+ poCoy ®hor1+ p1Cor®@he, (4)
treatmenf11]. Ideally, the material’s structure will mimic, to
some extent, the structure of the template. Templated porous
materials find use as adsorbents, F;ensors, gzs segaratiortﬂo'l_C°’1+p°C°°'®h01+pO’C°'°/®h°/1+p1C°'1®h°’
membranes, and molecular recognition agents. One can en-
vision using templating, together with existing methods for
controlling porosity, to tailor porous materials that impart a 111~ €11+ PoC01® hort porCor1®MNor1 +p1Cc®N1t pay
specific phase behavior to an adsorbed fluid. ®he, (6)
In this paper, we investigate fluid phase behavior in the
presence of templated quenched disorder. We model both the
fluid and the quenched disorder in terms of discrete particles;
the latter being a quenched, equilibrated configuration of a ) ] ) )
binary mixture of “matrix” and “template” particles with Whereci; (hj)) is the direct(total) correlation function be-
the template component removik®]. The analogy between fWeen componentsandj, p; is the density of component
the construction of this model and the formation of a tem-® IS @ convolution, and the subscripts 0, @Gnd 1 are the
plated porous material is obvious, but the model may alséhatrix, template, and fluid components, respectively. In ad-
quenched randomness, such as certain alloys, glasses, dn@ctions, defined as the sums of contributing diagrams pos-
magnetic systems. sessing at least one path connecting th_e fluid root points and
Simulation[13,14] and liquid-state theory15,16 have Not passing through any matrix field poirits7,18.

shown that the temperature-density phase envelope of a fluid We restrict ourselves to spherically symmetric potentials
divisible into a hard core repulsion and an attractive tail per-

turbation. We employ the mean spherical approximaltii
*Corresponding author. Electronic address: vantasse@wayne.eda solve Eqs(1)—(7): hj;(r)=—1 forr<o;; andc;(r)=

he=Cc+picc®hc, ()
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FIG. 1. Liquid-vapor phase envelopes for a fluidirom top to FIG. 2. Liquid-vapor phase envelopes, as described in Fig. 1,

bottom in each threesoma system of templated quenched par- With the sole difference that matrix-fluid attraction is equal to fluid-
ticles, a system of nontemplated quenched particles of the sanflid attraction:eg;=e1;.
available volumebut lower density; and a system of nontemplated
quenched particles of the same density as the top curve. The matrijon interaction. As expected, the critical temperature and the
and template densities, from top to bottom, agec=0.3, 0.2726, overall two-phase envelope are lowered upon increasing the
0.3, 0.6, 0.5535, and 0.6 apg, 05=0.6, 0, 0, 0.3, 0, 0. No matrix- matrix density. In addition, we observe these properties to
fluid attraction is present. It is clear that templating affects the phasincrease when the material is formed with a template. This is
envelope beyond the effect due to available volume. not unexpected since templating increases the available vol-
ume, which in turn is expected to shift the phase diagram
—uiFj’(r)/kaor r<oi;, whereo;=(a;+0})/2, o is the hard _upward. The question of V\_/het_her templating has a(_jd|t|_onal
sphere diameter of compone’ntuf influence on phase_ behavior is answe.red by considering a
nontemplated matrix of the same available volume as the

j(r) is the perturbation

ial | j, k is the Bol . . X ,
potential between componentsand], k is the Boltzmann éemplated one. Using a diagrammatic thepi], we find
nontemplated model systems of matrix densitiﬁ@ag

constant, and is the absolute temperature. We consider her
=0.2726 and 0.5535 to have the same available volumes

a truncated Lennard-Jones perturbation potentiaﬁ(r)z
_8" / 1;or ¢ Ugl,sr i <U£ 50 u”(rL 4,5”“3'(')”]2 (respectively as the two templated systems. For both high
5 (U”<r) ! hor TijST=2. ii ;- an lui]-_(r)—_ hlor and low matrix densities, we find the phase envelopes to lie
S0y <r. The one re£n7a|r]||_ng ¢ osuref re ?:'Ofn n ; IS r?p' between those of the templated and nontemplated systems of
proximation Isco=Cyy [ .]' 0 account for the fact that the e game density. This indicates that templating influences
template is removed prior to addition of the fluid phase, Wey,g hhase diagram beyond what would be expected from the
|mpc;]se the C%nd.'t'on thaf.o’l.zso’lzoh . | | increased available volume. This effect is most pronounced
The perturbation contributions to the internal and Helm-¢, yhe higher matrix density, where the critical temperature

holtz energies are obtained in the usual way: integration of, a templated system exceeds that of a nontemplated system

the product of the pair correlation function times the pairby about 20%.

energy and subsequent integration of the Gibbs-Helmholtz™ 14 i estigate the cause of this template-enhanced phase
equation. The perturbation contributions to the chemical POpehavior, we decompose the chemical potential into contri-

tential al_nd _compre53|blllty are determlned via first af‘d S€Chutions from hard sphere repulsion and attractive tail pertur-
ond derivatives of the free energy with respect to fluid den'bation' p1=puR+ 1P, We find xR to increase monotoni
© M= M T Mg 1 -

sity. The hard sphere reference contribution is determined bXaIIy anduf to decrease monotonically with increasipg
integrating the compressibility as in RgfL9]. Coexisting i . )
liquid and vapor densities are calculated using standard tecllnr—:c gigi::ar:’e?%iss %?g;?sri'gn ggp:fﬁzizgzag 'O;g%:‘rﬁ?bﬁirgie(;ce
niques to equate liquid and vapor phase chemical potentia q . y i pp . y

the required van der Waals loopu; is decreasedin mag-

and, via the Gibbs-Duhem relati¢8], grand potentials. X ) o _
; Jpitude by a reduced number of fluid-fluid interactions and
In Figs. 1 and 2, we show phase envelopes of two matriX"y 8 by

densitieSpOcrg=O.3 and 0.6, for equally sized matrix, tem- A1 is increased by a reduced available volufteethe entire

plate, and fluid diametersr = 7o=c;) With a nonattractive f:rt\tgl ggli gl?rztgllgﬁ Cl)? :’!I:(;%()I’St’)ev(\j/eﬂE%O\éve;hsﬁt;?g:ntigr?]lp?ai-ed
=0) and an attractives(y;= matrix-fluid perturba- . .
(£01=0) dor=1) P and nontemplated quenched disorder of the same available

- volume. The van der Waals loop is much more pronounced
IAs discussed in Ref§18, 27, a fluid’s mechanical pressure may N the former. We note that under these conditions it is the

differ from its thermodynamic pressutdefined as its grand poten- templated system that possesses a slightly StQﬁ%ﬁBO the

tial density in quenched matrices. The latter is the appropriateenhanced van der Waals loop is due solely to a greater

phase coexistence variable. magnitude contribution from the attractive perturbation in
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04 TABLE I. Average number of matrix-fluidNy;) and fluid-fluid
(N11) neighbors as determined by Ed8) and(9) for a saturated
liquid at kT/e4;=0.4 (for £¢y;=0) and at 0.5(for gp;=£47) in a

02 | /‘/mtamlated templated matrix(pgog=0.6, poos=0.3 and for a liquid of the
v same temperature and density in a nontemplated matrix of the same
. P available volumepyos=0.5535,p000=0).
oot [
y Templated Nontemplated Templated Nontemplated

/ terrplated - o - ~
/ £01=0 £01=0 €01~ €11 €01~ 811
02 4 (Noy) 2.38 2.75 3.94 4.23

’ (N1 5.07 3.97 3.90 3.32

04 ‘ ‘ ‘ . .
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3
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ficient to explain our result. In that cas@:lP would be iden-

FIG. 3. The chemical potential versus density of a fluid in atical in both matrices and the slightly highef! for the fluid
system of templated quenched particlggos=0.6, poos=0.3) in the templated matrixof the same available volurheas
and a system of nontemplated quenched particles of the same avafihown in Fig. 5 of Ref[18], would cause the nontemplated
able volume(p,o3=0.5535,p005=0) at a temperature dfT/s;;  Matrix to possess the more pronounced van der Waals loop.
=0.4. No matrix-fluid attraction is present. The circles represent Although only an approximate theory, the mean spherical
points where the average numbers of fluid-matrix and ﬂUid'ﬂUidapproximation(MSA) energy approach has been shown to
neighbors are calculatddee Tablle)l The enhan.ced van der Waals accurately predict the phase behavior of a bulk fluid and a
qup of_ the temp_lated system is due to an increased number gf i adsorbed in a nontemplated systéi#]. We should
fluid-fluid interactions. point out that this approach does not predict a true critical
point characterized by a diverging density correlation length;
instead, the region near the critical point is described by the
rH_sual mean field exponents. We emphasize, however, that

plated matrix to be one that favors fluid-fluid attractive inter-ONIY @ refatively small region of the phase diagram is af-
actions. fected by this theoretical shortcoming and that an accounting

To further test this observation, we calculate the averagé® Made for the physical causes of phase transitions away
number of neighboring particld46] as from the critical point, namely, balances between energy and
entropy leading to van der Waals loops. In contrast, the MSA
N " min compressibility approach fails to predict a phase transforma-
(NOD:P1JO (hoy(r)+1)dr, (8  tion in the presence of quenched disorder in systems of di-
mension less than 1].
. We take a moment to discuss the nature of the liquid and
<N11>:plf ™ (hyy(r)+1)dT, (9)  vapor phases encountered here. Although the density distri-
0 bution of a fluid in the presence of quenched disorder is
inhomogeneous for a given quenched configuratibrbe-
wherer y,;, is the separation at which the first minimum of comes homogeneous when averaged over an ensemble of
the pair correlation function occuréThe angular brackets quenched configurationslocalized regions of high or low
and overbar represent averages over fluid and matrix cordensity are not the liquid and vapor phases defined by the
figurations, respectively, as in R¢18].) Comparing a coex- phase envelopes. Points ¢ar outside the envelopes are
isting liquid in a templated matrix with @noncoexistingg  true thermodynamic phases immersed in the quenched disor-
liquid at the same temperature and density in a nontemplateder. Implicitly, the interface between coexisting phases is
matrix of identical available volume, we find the averageneglected, its influence vanishing in the thermodynamic
number of fluid-fluid (fluid-matrix) interactions to be in- limit. In this sense, a Kelvin equatiofi23] or Gibbs-
creased(decreasedin the templated systertsee Table).  Thomson relatiofi24] analysis, which considers the effect of
Our conclusion is therefore that fluid-fluid interactions areinterfacial shape on the equilibrium between a localized re-
suppressed to a much lesser degree by templated quenchgidn and a bulk phase, is not directly useful for predicting
disorder and that this leads to a more negayiafeand an the true phase envelope. Furthermore, a Kelvin-equation-
“enhanced phase behavior” relative to that observed in stanbased approach predicts an altered pressure of coexistence
dard (nontemplategdquenched disorder. but not an altered critical temperature; this is incompatible
It is unlikely that a considerably simpler approach couldwith observations made here and elsewli&Be-16. Finally,
yield such a prediction. For example, even a detailed treatbecause of the high density and small particle size of the
ment of a hard sphere system, with the attractive perturbatioguenched disorder considered here, it would be difficult to
considered within a mean field framework, would be insuf-assign a geometry to an interface separating regions of

the templated system. This suggests the geometry of the te
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higher and lower fluid density. However, for quenched dis- We thank Pascal Viot, Julian Talbot, Gilles Tarjus, and
order consisting of particles much larger than those of théeduardo Glandt for helpful discussions and the National Sci-
imbibed fluid, this difficulty may be lessened and the Kelvinence FoundatioiGrant No. CTS-987659%nd the Ameri-
equation could provide useful information on the effect ofcal Chemical Society’s Petroleum Research F(@dant No.
local condensation on the overall isotherm. 34163-G9 for financial support.
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